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LETTER TO THE EDITOR 

Towards a satisfactory formulation of the quantum Langevin 
equation 

H Hasegawat, J R KlauderS§ and M Lakshmanantll 
t Department of Physics, Kyoto University, Kyoto 606, Japan 
$ Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan 

Received 21 November 1984 

Abstract. The quantum mechanical Langevin equation for a damped harmonic oscillator 
with operator-valued noise, dA,/df  = (-io - y)A, + Aw( t ) ,  is reinvestigated. By assuming 
the canonical commutation relation at initial time, [A,,, A$] = I ,  and a Hermitian operator 
for the Gaussian quantum noise w ( t ) ,  it is shown that Streater’s procedure to satisfy 
[A,, A:]= 1 for all later time yields an improved result: the noise operator w ( f )  can be 
determined universally and normalised such that, by choosing A *  = 27(Phw)-’, the (sym- 
metrised) power spectrum of w ( t )  is equal to the physically significant form 
f p h w  coth($Phw), where P is the inverse temperature of the heat bath, thus ensuring the 
P-KMS correlation functions for any pair of operators. 

The theoretical formulation of quantum stochastic processes is one of the subjects 
currently studied in mathematical physics (Lewis 1981, Hudson and Streater 198 1, 
Barnet et al 1983a, b, Hudson and Parthasarathy 1984, Nakazawa 1984). On the side 
of statistical physics there exists an outstanding problem, which can hopefully be 
resolved in the course of this development: it was raised first by Senitzky (1960) and 
later examined by Lax (1966), Haken (1970) and Kubo (1969). Namely, we wish to 
quantise the Langevin equation for a damped harmonic oscillator with frequency w 
and the damping constant y, which may be expressed as 

dA,/dt =(-iw-y)A,+A,(t)  ( 1 )  
dAT/dt = ( iw - ?))AT+ Aa*( t )  (1”)  w, y>O, A real 

where A, (or its complex conjugate A:) represents, for example, the complex amplitude 
of a mode of the electromagnetic field in a cavity. The well known physical situation 
behind this set of equations is that the macroscopic decaying behaviour of the oscillator 
with rate y is caused by the fluctuating force h a (  t )  (or Aa*( t ) )  randomly acting on it 
from the cavity that plays the role of a heat bath whose only property, to the best of 
our knowledge, is the temperature p- ’ .  The classical theory of Brownian motion tells 
us that the idealised model of the time correlation between the forces a (  t )  and a*(  t ’ )  
is sufficient to describe the oscillator, i.e. 

( a ( t ) u ( t ’ ) ) = ( a * ( t ) a * ( t ’ ) ) = 0 ,  

( a * ( t ) a ( t ’ ) ) = S ( t - t ’ )  
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and then the choice of the noise strength A can be fixed as 

A *  = 2Y(A*A)equilibrium = ~ Y P - ’  (3) 
so that every statistical property of the oscillator (e.g. an approach to the thermal 
equilibrium (Hasegawa and Ezawa 1980)) may be achieved. 

To extend the above feature of the classical theory to a quantum framework, 
Senitzky ( 1960) and Lax ( 1966) recognised the necessity of considering the commutation 
relation between the operators A, and AT, i.e. 

(i) [A,, AT] = 1 holds for all time t 2 0, (4) 

and that for this it is necessary to regard the noise forces a ( t )  and a * ( t )  also as 
non-commuting operators. An even more important comment on such noise operators 
was given by Kubo (1969), who noted that under a stationary situation the time- 
analyticity property, now known as the KMS condition, should hold: 

(ii) (ATAr+,) = (At+,+ifipAT). ( 5 )  

Thereby, he emphasised that the quantum noise fulfilling this condition could not be 
of the white character in the usual sense. The seemingly satisfactory model of the 
quantum noise set up by Lax (1966) in a classical white-noise analogue, as a matter 
of fact, did not satisfy (ii), though it satisfied (i). Thus, the whole question concerning 
the quantum mechanical version of the Langevin equation ( I )  can be specified to ask 
whether it is possible or not to determine the quantum noise a(  t )  in (1) and a*(  t )  in 
(1*) such that both conditions (i) and (ii) are fulfilled for every pair of solutions A, 
and AT. 

Notable progress has been made by Streater (1982) along the lines of the above 
setting. He expanded a ( t )  and a * ( t )  as 

a ( t )  = dkf(k)a(k)  eCikt, lom 
dkf*(k)a*(k) eikt 

where 

[ a ( k ) ,  a*(k’)]= S ( k - k ’ )  (6a)  
and 

[ a ( k ) ,  a ( k ’ ) ]  = [ a * ( k ) ,  a* (k ) ’ ]  = 0, (6b) 
and analysed the canonical commutation relation (CCR) (i) to determinef( k ) ,  showing 
that (i)  holds if and only if the spectral density function of the oscillators for the bath 

(7) 

(8) 

p(  k) = h21f( k)I2 b 0 

p(  k + W )  + p (  - k + U )  = 2 ~ /  T.  

satisfies a functional equation 

Streater emphasised the positive-axis Fourier expansion (6) so that (8) must be solved 
by imposing the extra condition 

P ( k )  =o  for k < 0. (9) 
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This leads to a rather peculiar feature for the possible form of the density function. 
his conclusion about p ( k )  may be expressed in terms of an arbitrary measurable 
function a(k); O ~ a ( k ) a 2 y / . r r  as p ( k ) = O  (k<O), = a ( w - k ) ( O a k < w ) ,  = 2 y / ~ -  
a ( k - o )  ( o s k < 2 w )  and =2y/7r ( 2 w a k ) .  

With the spectral density function p(  k) so obtained, Streater further discussed the 
satisfaction of the condition (ii): for this it is sufficient to assume 

( a * (  k ) a  ( k’ ) )p  = n( k ) 6 (  k - k’) ,  

( a (  k‘)a*(  k)),, = (1 + n( k ) ) 6 (  k - k f ) ,  

( a ( k ) a ( k ’ ) ) ,  = ( a * ( k ) a * (  k ‘ ) ) p  = 0 

with the Planck distribution 

n ( k )  = (ePhk - l)-’ and n ( k ) +  1 = n ( k )  ePhk. (11) 

One then obtains for the stationary process ( t  >> y-l for which the transient component 
of the solution is dropped) 

= (AZAm(7+if@)), (12) 

which implies the KMS identity. We note that the satisfaction of this relation stems 
from the equilibrium characteristics of the heat bath (10) with temperature p-’  and 
holds irrespective of any specific form of the density function p(  k). 

In spite of the detailed construction and internal consistency in the above argument, 
we feel that some physically unsatisfactory feature remains in that the density function 
p ( k )  to solve (8) and (9) depends artificially on the frequency w of the injected 
oscillator, and even more, on the arbitrary function a ( k )  which is unknown. So, our 
discussion in the remainder of this letter will be simply to remedy this deficiency. 

Let us consider the quantum noise to be of Hermitian character w (  t)  = a( t )  + a*( t) ,  
instead of a ( t )  or a * ( t )  defined by ( 6 ) ,  for the Langevin force in ( 1 )  or (l*): 

dA,/dt = (-iw - ?)A, + hw( t )  

dAT/dt = (iw - y)AT + Aw( t )  

(13) 

(13*) 

where, from (6) and (6a, b), 

w ( r ) =  dkf(k)a(k)  e-ikf + dkfr(k)a*(k)  eikf. (14) lom lom 
This choice satisfies the commutation relation 

[ w ( s ) ,  w(s‘)]= dk  (f(k)/’exp[-ik(s-s’)]- dk  If(k)l’exp[ik(s-s’)] Jom 
m 

5: 
I_, = dk sgn( k ) ( f (  k)lZ exp[ -ik(s - s‘)] (15) 

where the symmetry If( k)lz = If( -k)I2 has been assumed. This is to be compared with 
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the commutation relation required in Streater’s analysis, i.e. 
m 

[a (s ) ,  a * (s ’ ) ]=  lo dk If(k)12 exp[-ik(s -s’)]. 

The commutation relation (15) is ued to compute the one for the solutions A,  and AT 
of (13) and (13*), i.e. 

A,  = A,  exp(-iw - y ) t  + A 

so as to ensure the CCR condition 

ds  w ( s )  exp[(-iw - y ) ( t  - s)], AT = HC, 1,‘ 
[A, ,  AT1 = 1 (17) 

which is assumed to hold at the initial time t = 0; [A,, A:] = 1. This is completely 
analogous to what Streater did for his solutions of ( 1 )  and ( I * )  by using the commutation 
relation (16). 

Our analysis, therfore, is quite. parallel to Streater’s treatment apart from the 
replacement of the integration j: dklf(k)12.. . by the new integration 
jYm dk sgn(k)lf( k)(’. . . , so that the integral equation for If( k)I2 may now be written as 

If lm dk[sgn( k+ w ) l f ( k +  w)12+ sgn(-k+ w ) l f ( - k +  w)l’](  y2+ k 2 ) - ’  cos(kt) 
2 -a2 

This leads us, by virtue of the identity 

and the uniqueness of the inverse cosine transform, to 

sgn(k+ w)p(k+w)+sgn(-k+ w ) p ( - k +  w )  = 2 y / r  (19) 

where the same definition of the spectral density function p ( k )  as before, equation 
(7) ,  is made. We note that the sign function here (sgn(k) = +1 for k >  0 and -1 for 
k < 0 )  is due to the basic commutation relation ( 6 a )  and is necessitated from our 
choice of the noise operator w( t )  in (14). Since any real number x is represented as 
x = sgn(x)lx/, equation (19) may be rewritten as 

p*(k+ 0) + 6 ( - k +  w )  = 2 y / r  (20) 

P ( k )  = Ip*(k)l. (204  

where p*(k),  not necessarily positive, is related to the positive p ( k )  as 

Thus, our functional equation to determine the quantum noise in the Langevin equation 
(1 )  is different from Streater’s equation (8), though similar in form, in that the p^( k )  
in (20) is neither restricted to positive values nor imposed to be identically zero on 
the negative k axis. 

We expect, from a physical standpoint, that the function p ( k )  should be factored 
out into a constant only depending on the parameters w and y times a universal 
function of k that represents the spectrum of the heat bath. Supposing that such a 
parameter dependence be absorbed into the coupling strength A’ in (7), we now wish 
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to determine a possible form of the universal function that satisfies 

p^( k + O )  + p^( - k + W )  = C (  U, 7 )  = ( 2 y /  7 ) A  -’( W ,  7 )  ( 2 1 )  

where now Ip^(k)l ( = ) f ( k ) l ’ )  is independent o f o  and ‘y. Only a linear function p^(k) = 
A k  + B satisfies this requirement, provided continuity is imposed! The proof of this 
fact is straightforward. 

For w =k, (21) implies that C(w, y ) = p ^ ( 2 w ) + b ( O )  which leads to p ^ ( k + w ) +  
p^( - k + w ) = p^( 2 w )  + p^( 0 ) .  We let g (  k )  = p^( k )  - p^(O), and set a = k + w and b = - k + w : 
it follows that g (  a )  + g (  b )  = g (  a + b) .  Following a standard argument, we find that 
2 g ( a ) = g ( 2 a )  and g(na)+g(a)=g((n+l)a),namelythat g ( n a ) = n g ( a ) .  If a = l / m ,  
then we have g ( n / m ) =  n g ( l / m ) .  Finally, we add the relation for n = m, namely 
g (  1) = mg( 1 /  m ) ,  which leads to g (  n / m )  = ( n / m ) g (  1 ) .  By the assumption of continuity, 
as n / m  + k, an arbitrary positive real, we find that g ( k )  = kg( 1). For negative k one 
chooses a = - l /m in the above argument leading to g ( - k )  = k g ( - 1 ) .  Since g ( k )  + 
g ( - k )  = g ( 0 )  = O  it follows that g(-1) = -g(l), and thus g ( k )  = k g ( 1 )  holds for all real 
k Re-expressing this result in terms of p  ̂ we find p^( k )  = kg( 1) + p^(O), as was to be shown. 

Having the possible form of p^( k )  so determined, we further specify it by imposing 

b(0) = 0 ( 2 2 )  

which is necessary for the regularity of the equilibrium state (10) with the Planck 
distribution (1 1 )  in the limit k +  0. The determination of b( k )  and hence p (  k )  is now 
unique, i.e. 

p ( k )  = A2If(k) l2= (’y/.rrw)lkI, ( 2 3 )  

implying that the universal function to represent the spectral density of the boson heat 
bath must be the linear function Ik(. 

It should be noted that the modification of the quantum noise from a ( t )  to w ( t )  
i.e. from equation ( 1 )  to (13) (also from equation (1*) to ( 1 3 * ) )  affects a different part 
of Streater’s results than the spectrum: the gauge invariance no longer holds so that 
(A,A, , )  f 0. On the other hand, the second requirement (ii) of the KMS stationary state 
is still satisfied even with the sbove alteration, as can be seen from 

and 

where e( k )  is the Heaviside function and 

( n ( l k l ) +  1 )  n( lkl) ,  

and hence (AZA,( T +  ip))p = (A,( T)A%),+ 
Equations ( 2 4 a )  and ( 2 4 b )  are combined to give 

(;(A%(T) + AW(7)A%))p 
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where 

and 

In particular for T = 0, [A,, A%] = 1 as must be the case, and 

X ,  = (i( AZA, + AmA%)), 

which may be considered as the quantum analogue of the fluctuation dissipation 
theorem implied in (3), modulo zero point flcutuations. One can show in fact the 
approach of the operator X ,  to X ,  from the Langevin equation 

Finally, the two results (26)  and (27) indicate that the stationary quantum stochastic 
process so established as solutions to equations (13) and (13*) provides a good example 
of the operator-valued Gaussian process first formulated by Lewis and Thomas (1979 ,  
because of the structure [A,( T ) ,  A%] = ihp$’(T) where $( T )  is the correlation function 
in (26) with p ( k )  being replaced by the classical limit (1). It is also noteworthy that 
the universal noise operator w (  t) ,  renormalised such that [ w (  t) ,  w(O)]  = ihpS’( t )  can 
be identified with the recently introduced notion of the quantum Gaussian (white) 
noise (Nakazawa 1985). From the above Lewis-Thomas point of view, the correlation 
function $ ( T )  is equal to S(T) for which the power spectrum is just ‘white’ and the 
quantum effect is represented by the universal function p (k )  given by (26a) .  

Two of us (JRK and ML) would like to acknowledge the Japan Society for Promotion 
of Science for financial support. 
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